July 2004

Dust Settlement in Orion Proplyds

Takuya Yamashita¹, M. Ito², S. Sako³, M. Honda², H. Kataza⁴, T. Miyata³, Y.K. Okamoto⁵, T. Fujiyoshi¹, H. Terada¹, and T. Onaka²

(Email: takuya@subaru.naoj.org)

¹Subaru Telescope, National Astronomical Observatory of Japan, Hilo, Hawaii, USA ²Department of Astronomy, School of Science, University of Tokyo, Tokyo, Japan ³Institute of Astronomy, School of Science, University of Tokyo, Tokyo, Japan ⁴Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Japan ⁵Center for Natural Science, College of Liberal Arts and Sciences, Kitasato University, Japan

We have made mid-infrared and H₂ emission surveys of Orion proplyds in order to study the behavior of gaseous and solid components within their circumstellar disks. Imaging observations at 11.7 μ m were made with COMICS on the 8.2-m SUBARU telescope. Several proplyds were extended but most of them were unresolved in the MIR. The H_2 emission at 2.12 μ m was observed for about 30 objects, one by one, with an echelle spectroscopic mode of IRCS on SUBARU and was detected for about half of the targets. We found an clear anti-correlation between the MIR flux density and the H₂ emission (i.e., proplyds strong in H₂ emission had weak MIR emission). This anti-correlation is naturally understood as an evolutional sequence of evaporation for proplyds, in which gaseous and solid components are separated along the z direction within the circumstellar disk. We argue that the separation is likely to be caused by settlement of dust grains onto the disk equator.

